
Kernel-Assisted Debugging of Linux Applications
Tobias Holl, Philipp Klocke, Fabian Franzen, Julian Kirsch

Technical University of Munich
Garching, Germany

ABSTRACT
On Linux, most—if not all—debuggers use ptrace debugging API
to control their target processes. However, ptrace proves unsatis-
factory for many malware analysis and reverse engineering tasks:
So-called split-personality malware often adapts its behavior in the
presence of a debugger, yet ptrace makes no attempt to hide from a
target process. Furthermore, ptrace enforces a strict one-to-many
relation meaning that while each tracer can trace many tracees,
each tracee can only be controlled by at most one tracer. Simultane-
ously, the complex API and signal-based communications provide
opportunities for erroneous usage.

Previous works have identified the newer uprobes tracing API
as a candidate for building a replacement for ptrace, but ultimately
rejected it due to lack of practical use and documentation. Building
upon uprobes, we introduce plutonium-dbg, a Linux kernel module
providing debugging facilities independent of the limitations of
ptrace alongside a GDB-compatible interface. Our approach aims to
mitigate some of the design flaws of ptrace that make it both hard
to use and easy to detect by malicious software.

We show how plutonium-dbg’s design and implementation re-
move many of the most frequently named issues with ptrace, and
that our method improves on traditional ptrace-based debuggers
(GDB and LLDB) when evaluated on software samples that attempt
to detect the presence of a debugger.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;
• Software and its engineering→ Software testing and
debugging;

KEYWORDS
Linux, debugging, ptrace, uprobes, GDB, debugger detection

ACM Reference Format:
Tobias Holl, Philipp Klocke, Fabian Franzen, Julian Kirsch. 2018. Kernel-
Assisted Debugging of Linux Applications. In Reversing and Offensive-
oriented Trends Symposium (ROOTS ’18), November 29–30, 2018, Vienna,
Austria. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3289595.
3289596

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROOTS ’18, November 29–30, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6171-2/18/11. . . $15.00
https://doi.org/10.1145/3289595.3289596

1 INTRODUCTION
In general, Linux debuggers rely on a single kernel API named ptrace
to attach to and manipulate other processes. This applies not only
to general-purpose debuggers such as GDB, but also to software
specifically targeted at malware analysis and reverse engineering
tasks. For example, both IDA Pro and Radare2 internally use ptrace
to provide their debugging functionalities.

However, ptrace—first introduced in UNIX v6 (1975)1—was never
designed to accommodate analysis of environment-aware, evasive
targets such as so-called split-personality malware: Many malware
samples perform some sort of environmental analysis to detect
debuggers, and then alter their behavior accordingly, e.g. by per-
forming harmless tasks instead of the intended malicious actions,
or by trying to remove traces of itself from the infected system [3].
While so far these methods are not quite as common in Linux mal-
ware [5], the increasing prevalence of Linux on consumer devices
may well lead to a similar “arms race” as that observed in the past
decades with Windows malware. With ptrace, a piece of software
can trivially detect if it is being debugged:
if (ptrace(PTRACE_TRACEME, 0, NULL, NULL) == -1) {

/* This process is being debugged */

}

Other design decisions also negatively affect ptrace’s usefulness
for malware analysis:

• When debugging, the target process or thread is made a
direct child of the debugger. Some effort is made to keep
presenting the “real” parent to user-space queries, but it is
still possible to detect debugger presence by attempting to
receive the SIGCHLD sent from a terminating child process.
If the child process is being debugged, the signal will be sent
to the debugger instead.

• Only one debugger can be attached to a process at any one
time. If not prohibited by security settings, a malicious pro-
cess can simply spawn a child process and attach to it, which
stops others from debugging that process. This also affects
other software where ptrace is used for non-malicious pur-
poses.

• Memory transfer is limited to one machine word (8 bytes
on x86-64) per system call2, leading to extremely inefficient
data transfer at a cost of at least two context switches per
transferred machine word [2, 13].

Simultaneously, the ptrace API is complex to use for custom-built
software whenever it cannot be abstracted by another tool like GDB
[4]—so complex, in fact, that UNIX v8 (1985) opted to provide an
easier interface through the /proc file system [2, 13]. Linux has not
adopted this approach, instead adding new features to the already
fragile ptrace() system call [1].
1Manual for ptrace on UNIX v6, http://man.cat-v.org/unix-6th/2/ptrace
2man ptrace, under PTRACE_PEEKDATA and PTRACE_POKEDATA

https://doi.org/10.1145/3289595.3289596
https://doi.org/10.1145/3289595.3289596
https://doi.org/10.1145/3289595.3289596
http://man.cat-v.org/unix-6th/2/ptrace

ROOTS ’18, November 29–30, 2018, Vienna, Austria Tobias Holl, Philipp Klocke, Fabian Franzen, Julian Kirsch

Because ptrace has no built-in support for breakpoints, debuggers
must manually generate the appropriate instructions for the current
architecture and write them to process memory. Similarly, there is
no concept of threads. Like the rest of the kernel, ptrace treats each
thread as a separate process, forcing users to manually attach to
each thread of the targeted process.

This paper presents a new Linux debugging mechanism which
bypasses these limitations. In particular, we make the following
contributions:

• We design plutonium-dbg, an open source kernel-module–
based debugging mechanism for Linux applications (Section
3) and show how its design circumvents some of the limita-
tions imposed by ptrace.

• We describe in detail how plutonium-dbg uses modern ker-
nel APIs to provide debugging functionality (Section 4).

• Finally, we show how plutonium-dbg impedes efforts by
malicious software to detect and interfere with debuggers
(Sections 5 and 6).

2 BACKGROUND
In this section, we briefly highlight the concepts needed to un-
derstand how Linux debuggers operate in detail, and some of the
additional features that can assist modern Linux debugging utilities.

2.1 Debugging concepts
The following concepts are supported by all major debuggers in
some form:

2.1.1 Process Relationships and Terminology. Debuggers are es-
sentially processes that aim to manipulate other (possibly already
existing) processes. However, operating systems usually strictly sep-
arate process address spaces from each other, such that no process
can (unintentionally or maliciously) modify a different processes
memory contents. Therefore, debuggers must be offered a way of
circumventing this isolation by the operating system kernel.

In Linux, ptrace allows debuggers to pierce the isolation of any
thread marked with the SUID_DUMPABLE_USER flag3, although addi-
tional kernel security modules such as YAMA may further restrict
access. Once attached, memory and registers in the foreign process
may be modified using the PTRACE_POKEDATA/PTRACE_POKETEXT
and PTRACE_SETREGS/PTRACE_SETFPREGS/PTRACE_SETREGSET oper-
ations offered by the ptrace system call.

Throughout this work we use the terms debugger, and tracer
interchangeably to refer to the process that maintains control of
some other process in order to perform debugger functionality.
Similarly, we use the terms debuggee, tracee, and target to refer to
the process whose execution is to be inspected or altered by the
debugger.

2.1.2 Breakpoints. On most architectures, software breakpoints
are created by inserting a special instruction that triggers a trap
or interrupt in the CPU. On x86-64 and x86, a breakpoint trap
is triggered by the int3 instruction, usually present in machine
code as a single CC byte4. As opposed to software breakpoints,
some architectures (such as x86-64 and x86) also offer hardware
3man prctl, under PR_SET_DUMPABLE.
4CD 03 is a rarely-used alternative encoding of the same instruction.

breakpoint support. The latter have the advantage that they do not
alter the program in memory but are at the same time limited in
number because they rely on explicit CPU support.

The Linux kernel implements software and hardware break-
points via signalling: If the CPU ends up executing a breakpoint
instruction, the interrupt handler in the Linux kernel sends a SIG-
TRAP signal to the thread that hit the breakpoint. If a tracer (such
as a debugger) is attached via ptrace, the signal is redirected to the
tracer and masked from the tracee.

2.1.3 Single-step execution. In order to step over an already placed
breakpoint, one strategy can be to restore the original instruc-
tion, single-step over that instruction, and then restore the break-
point. However, this approach might introduce a race-condition
on multi-threaded applications: If a second thread executes the
target instruction while the breakpoint is removed in an attempt of
single-stepping the first thread, the second thread might miss the
breakpoint. Because of this, GDB suspends all threads of a program
while executing the target instruction [18].

Single-stepping generally involves setting a bit in one of the
CPU’s flag or debug registers. On all Intel 8086-based architectures
(including x86-64), bit 8 (the so-called “trap flag” TF) of the FLAGS
register indicates that the processor should send a special interrupt
(generally int1) after executing the next instruction. Once Linux
receives this special interrupt, a special handler again generates a
SIGTRAP signal. If a debugger is present, the signal is redirected
appropriately.

2.2 Linux kernel features
At the time of writing (August 2018), the Linux kernel already ab-
stracts away much of the hardware interaction that is required to
properly support debugging: For example, implementing single-
stepping on x86-64 in user-space code alone is essentially impos-
sible, because the implementation would either have to modify
the kernel interrupt handlers (to intercept the trap directly) or the
kernel’s signal processing code (to redirect the SIGTRAP from the
target to the debugger). Both are pieces of the operating system
that cannot be accessed directly from user-space code. Instead, cur-
rent debuggers use ptrace with the PTRACE_SINGLESTEP argument
to inform the kernel that the tracee should execute (at most) one
instruction.

However, to our knowledge, debuggers so far did not adopt a
number of additional features that were introduced into the kernel
over the past decade, mostly due to usability issues:

2.2.1 Kernel tracing. Over the years, the Linux kernel has itself
gained a number of tracing and debugging features, mostly to iden-
tify performance issues [8]. Static and dynamic trace points enable
kernel developers to register custom callbacks at specific locations
within the kernel5.

These features allow a debugger with kernel components to react
to events directly in the kernel without having to rely on ptrace to
support that specific event.

2.2.2 User-space tracing. Eventually, the utrace project imple-
mented similar tracing and debugging features for user-space
5Static trace points are provided through ftrace and perf_event, while dynamic trace
points were introduced with kprobes.

Kernel-Assisted Debugging of Linux Applications ROOTS ’18, November 29–30, 2018, Vienna, Austria

applications, with the ultimate goal of making ptrace just one of
many utrace clients [12]. However, the patches were not accepted
into the mainline Linux kernel [4, 20], and development on utrace
was abandoned. Only the core tracing functionality (largely similar
to kprobes) was retained under the name of uprobes and integrated
into the kernel.

Unfortunately, while a tracing interface is exposed to user-space
at /sys/kernel/debug/tracing/, the actual kernel code of uprobes
remains sparsely documented. Combined with the fact that any
significant customization requires writing a custom kernel module,
uprobes has not seen widespread adoption for debugging-related
tasks that need interactivity for proper operation. The Simterpose
emulation framework has explicitly rejected using uprobes, at first
because of its relative immaturity [10, 11] and later because it
requires the use of a custom kernel module [16]. The SystemTap
and perf-tools utilities both offer some form of interface to uprobes
for tracing purposes only [9, 19].

2.2.3 Threads and processes. The Linux kernel largely treats
threads exactly the same way as processes, with the only distinction
that different threads of the same process share some of their
properties (e.g. address space). This has given rise to some
confusing terminology:

Inside the kernel, each thread or process is represented by a
struct task_struct, which among many other properties also
stores a unique ID for each task. The kernel exposes two system
calls to access these values, getpid (returning the ID of the process
to which the calling thread belongs) and gettid (returning the ID
of the calling thread). Accordingly, we often refer to these values
as the process ID (PID) and thread ID (TID) respectively.

Inside kernel code, however, the terms TID and PID are generally
used interchangeably. For example, the task_struct member that
holds the TID is actually called pid. Instead, the kernel perceives
user-space processes as groups of threads, each with a group leader.
The TID of the leading thread is then called the thread group ID
(TGID), which is what user-space considers to be the ID of the
process.

In order to avoid this ambiguity, we will consistently use the term
TID when referring to a single thread, and TGID when referring to
a process.

3 DESIGN
In order to provide a meaningful alternative to ptrace-based de-
buggers, we need to address the issues identified in Section 1. This
requires us to take the following design considerations into account:

3.1 System architecture
Currently, the only API enabling us to access the kernel features we
need for debugging is the ptrace() system call, which we explicitly
avoid using in this work (cf. Section 1). Single-stepping, for example,
is enabled by a call to the kernel-level function user_enable_sing-

le_step, which on x86-64 is only ever called from ptrace-related
kernel code, so we must provide an alternative interface.

This means that in order to access these functions we must either
modify the kernel itself (and distribute the appropriate patches), or
provide a loadable kernel module (LKM) that performs the neces-
sary calls. Kernel modules can be loaded and unloaded at runtime,

and significantly simplify development, maintenance and installa-
tion [6]. Not only does modifying the kernel sources themselves
require end users to apply custom patches and recompile their ker-
nel, but it also makes maintenance across kernel versions more
difficult. We therefore opt for a module-based approach.

Because this work mostly presents a new debugging back-end,
it also seems unwise to introduce an entirely new user interface.
GDB has extensive remote-debugging support, introduced to allow
clients to connect to debuggers running on other devices. How-
ever, there is no restriction that forces the other device to be run-
ning an actual GDB server—any utility that understands the publi-
cally available GDB remote protocol can function as a GDB server.
plutonium-dbg can use this functionality to allow GDB clients to
interface with the new kernel module.

Therefore, plutonium-dbg consists of two separate layers: In
user-space, a small remote server translates the GDB protocol into
commands for the kernel module, which then implements the actual
debugging features.

Communication between the client and the server can take place
through any link supported by GDB, including TCP and Unix do-
main sockets. Communication between the server and the kernel
module (running on the same host) is implemented by means of
the ioctl user/kernel communication interface.

3.2 Debugging functionality
Conventional debuggers use ptrace to control process execution
through breakpoints and single-stepping, as well as to access and
modify process memory and CPU registers. This provides us with
a minimum baseline of features that must be present in the kernel
module to make debugging use feasible.

3.2.1 Breakpoints. Breakpoints are generally created by replacing
the instructions at the target address with a special breakpoint
instruction (cf. Section 2). Because the different threads of a process
share the same memory, they are inherently global to a process.
While it would be possible to filter breakpoint “hits” by thread, such
a feature can just as easily be implemented outside of the kernel
by simply continuing execution of threads that should ignore this
breakpoint.

A breakpoint is therefore uniquely identified by the process
TGID (its target) and the address inside the address space of the
process.

3.2.2 Single-stepping. In the kernel, single-stepping is enabled
individually for each thread. Because behavior would be ambiguous
if there were separate options to single-step the entire process or
just a single thread, we explicitly require users to specify which
thread they wish to single-step6.

3.2.3 Thread suspension. Each time a debugged thread hits a break-
point, it is automatically suspended to allow the debugger to react
to the breakpoint hit (usually by prompting the user for input).
However, it is also useful to allow a debugger to forcibly suspend
a target thread without explicitly inserting a breakpoint. This is
necessary to support interactive debuggers that suspend a target

6Full process single-stepping can still be emulated by enabling single-stepping for all
existing threads and intercepting the creation of new threads.

ROOTS ’18, November 29–30, 2018, Vienna, Austria Tobias Holl, Philipp Klocke, Fabian Franzen, Julian Kirsch

process on first attach in order to allow the user to set up break-
points. Obviously, an analogous API must be provided to allow
debuggers to continue execution of a thread or process, both af-
ter handling a breakpoint and after a thread has been manually
suspended. Because these operations are also sensibly defined for
entire processes (they simply act on all existing threads of the target
process), it should be possible for a user to specify whether they
are targeting the entire process or just a single thread.

3.2.4 Memory and register access. Besides forwarding events from
single-stepping and breakpoints, remote memory and register ac-
cess is the core feature of ptrace. While it will no longer be necessary
to directly manipulate process memory in order to install break-
points (cf. Section 4.2.2), controlling the target process’s memory is
still very useful for debugging. We identified in Section 1 that the
limited memory bandwidth of ptrace can sometimes be an obsta-
cle for debugging. Our solution should therefore allow accessing
memory blocks of arbitrary length as long as the target process
has access to that memory. Because memory is generally shared
between threads, it does not matter whether a specific thread or the
whole process is addressed. On the other hand, registers are specific
to each thread, and access can only happen through the TID of the
target.

3.3 Other requirements
To address the problems described in Section 1, we take the follow-
ing properties into consideration.

3.3.1 Multiple debuggers. One of the more significant limitations
of ptrace is that only one thread can ever debug any particular
target7. Our motivating example from Section 1 shows how this
allows easy detection of attached debuggers. Of course, a common
method to circumvent these checks is to remove them from the
binary that we are analyzing, or to manipulate the instruction
pointer to skip the checks entirely. However, it is easy to imagine
more complex approaches to debugger detection that actually use
ptrace functionality, e.g. by writing and reading arbitrary locations
in memory on which subsequent program behavior could depend.
These methods would then need to be emulated by the tracer to
remain undetected.

Therefore, it should be possible to attach any number of debug-
gers to a single target thread or process, independent of the usage
of ptrace. At that point, the notion of “attached” or “detached” be-
comes one of user interface logic—the need to explicitly signal that
a debugger is taking control over a target no longer exists.

This has a number of effects on the remaining design. For exam-
ple, breakpoints cannot be tied to a specific debugger. Traditionally,
only one debugger would “own” a breakpoint, and removing the
breakpoint in that debugger meant restoring the instruction to
its original state. Instead, debuggers must now register to handle
breakpoint hits, and the actual breakpoint instruction is only re-
moved when there are no listening debuggers remaining. Similarly,
threads that have hit a breakpoint must remain suspended until
all debuggers that were notified of the breakpoint signal that the
thread should continue execution. Furthermore, multiple debuggers

7Note that debugging is limited to one thread, not to one process at a time, so even
normal multi-threaded debuggers can be affected by this issue.

must synchronize their states and must, for example, be aware that
breakpoints can disappear because a different debugger instance
removed them from memory.

3.3.2 Transparency. At the same time, there should be no direct
way for the target to determine whether its thread(s) is/are being
debugged. In particular, the existing ptrace-based methods of de-
tection should not detect our newly proposed debugging approach,
nor do we offer a trivial possibility to query the debug state of that
approach. We evaluate transparency guarantees of our approach
later, and discuss methods of debugger detection in Section 5.

3.3.3 Threads and processes. Because ptrace does not have a con-
cept of processes, debuggers must explicitly attach to each created
thread. There is explicit support to receive notifications of newly
created threads through the PTRACE_O_TRACECLONE flag, but it is
nontrivial to handle the different (and sometimes simultaneous)
incoming signals that debuggers are required to handle by ptrace’s
interface.

A usable replacement should instead work on a process level,
with thread-level granularity only for those operations that require
it. We discussed earlier, for example, that breakpoints can have
process-wide visibility by default—if only certain threads should
actually stop at that breakpoint, the debugger can instantly continue
the thread instead. In our case, this type of breakpoint handling
can be implemented on the GDB server’s side, and does not require
introducing additional complexity into the kernel module.

4 IMPLEMENTATION
There are different ways of implementing the features described
in Section 3. In the following, we describe in more detail how
plutonium-dbg uses kernel functionality to provide a meaningful
alternative to ptrace.

4.1 User-kernel communication
The Linux kernel offers a large variety of possible communication
methods between user-space programs and kernel modules. We
evaluated numerous approaches (including network-based commu-
nications through either UDP or Netlink), but ultimately settled for
a straightforward implementation based on file system I/O. As rely-
ing on read and write operations would require us to first design a
custom serialization format for our commands, we instead rely on
the ioctl() system call to communicate between the GDB server
and the kernel module. Incidentally, this method was also used in
UNIX v8 to make ptrace less cumbersome to use [2]. Functionality
to invoke ioctl() is available in most higher-level programming
languages including Python, in which the server component of
plutonium-dbg is written.

4.2 Debugging functionality
Because plutonium-dbg is designed as a kernel module, it can only
make use of those features that the kernel explicitly exports to mod-
ules. Where functions are not available to plutonium-dbg, we use
the kallsyms mechanism to gain access to non-exported functions.

4.2.1 Thread suspension. In Section 2.2.3, we briefly addressed the
struct task_struct Linux uses to represent threads internally. It

Kernel-Assisted Debugging of Linux Applications ROOTS ’18, November 29–30, 2018, Vienna, Austria

also stores the thread state, which we can manipulate to hold exe-
cution of a process. We set the state to TASK_KILLABLE, indicating
that it is blocked in the kernel and cannot otherwise be interrupted
except by fatal signals [15]. Then, we force the kernel to attempt
rescheduling the current thread using schedule. The kernel will
attempt to reschedule the current thread and automatically check
the state flag. If the task is not allowed to run, it is then removed
from the list of active tasks. It will remain in that state until we call
wake_up_process, where the kernel places the task back into the
running state.

A suspension triggered by plutonium-dbgmay be interrupted by
the kernel. Imagine, for example, that the target thread is currently
suspended inside a system call (e.g. doing I/O operations or even
just calling sleep()). Then, once the system call finishes, the kernel
will automatically wake up the target thread, regardless of whether
we wanted to suspend it. In doing so, our changes to the task state
will be overwritten, and suspension fails. This also means that if we
are not suspending the thread that is currently running, we cannot
immediately set the task state to TASK_KILLABLE.

Because of this, suspending another thread requires us to first
redirect control of the thread to our kernel module. We do this
by briefly setting the task state to __TASK_TRACED, a state used by
ptrace when it is suspending a debugged thread. Then we trigger a
scheduler interrupt in the target process8 and wait for the thread
to stop. Because we do not want to stay in the __TASK_TRACED

state any longer than necessary (it is publically exposed through
/proc/<tid>/status), we place a temporary breakpoint at the cur-
rent instruction pointer and wake the thread back up. Once execu-
tion continues, it will immediately activate the breakpoint and hand
control to the kernel module, where we can suspend the thread
using TASK_KILLABLE.

4.2.2 Breakpoints. Instead of requiring debuggers to place break-
points manually, we rely on uprobes (Section 2.2.2) to insert probes
into the target program. While fundamentally a tracing framework,
the ability to install custom probe handlers allows us to immedi-
ately suspend a target thread as soon as it executes the probed
instruction.

Because uprobes was originally designed to allow tracing of
processes sharing an executable file or library, it operates on offsets
within memory mapped inodes. We therefore must first translate an
address in the target’s address space to an inode number (identifying
the file on which the breakpoint should be placed) and an offset
inside this inode. This implies that only locations within mapped
files can be suitable for a breakpoint using this technique.

Breakpoint removal is another contentious issue. A uprobes probe
cannot be removed while a thread is suspended inside its handler
because cleanup routines can only run after the handler. If a debug-
ger removes a breakpoint with a suspended target, removal must
be deferred until after the handler has completed.

With uprobes, the breakpointed instruction is automatically exe-
cuted out-of-line after the handler returns. This means that—unlike
ptrace—the breakpoint instruction is never removed from the code

8This is necessary because the thread may currently be running on another CPU
on SMP-enabled systems. A scheduler interrupt can be triggered by setting the
TIF_NEED_RESCHED flag on the task and then using kick_process to force the tar-
get to enter the kernel.

[12], and that debuggers do not need to take special precautions
for multithreaded targets (cf. Section 2.1.2).

4.2.3 Single-stepping. Currently, the only way to enable single-
stepping for a thread inside the Linux kernel is calling ptrace’s
user_enable_single_step function. For each instruction, the tar-
get thread will therefore receive a SIGTRAP signal. Because SIG-
TRAP is usually fatal and certainly detectable, we must intercept
that signal before it is passed to the process.

Unfortunately, there is no way for us to explicitly intercept the
signal before it is passed to the process (even manipulating the
thread’s list of blocked signals does not work, because it is reset by
the kernel when the SIGTRAP is sent), and there is no official trace
point hook where we could access the signal data. We must there-
fore fall back to using kprobes in order to hook arbitrary locations
inside the kernel. Unfortunately, accessing the function arguments
through kprobes would involve platform-dependent register opera-
tions9, so we must place our hook in a location where we can access
the target thread without relying on the function arguments.

We use kprobes to place a hook at the start of the get_signal

function, which is executed every time a thread attempts to handle
a pending signal, and immediately return if the thread in question
is not being single-stepped. Next, we check if a (injected) SIGTRAP
is queued for that thread. If it is, we remove it from the queue and
suspend the thread just as we would on a regular breakpoint hit.
This also means that other SIGTRAPs not caused by our single-
stepping primitive are simply passed to the target thread’s signal
handler.

4.2.4 Memory and register access. Memory and register access are
probably the least complex of the features identified in Section 3.
The kernel provides functions to access another thread’s memory
(access_process_vm) and registers (copy_regset_to_user and its
complement copy_regset_from_user). These functions are either
used internally by ptrace or at least call the same functions, and do
not suffer from the limitations imposed by ptrace’s system call API.

In plutonium-dbg’s API, memory can be accessed in arbitrary
block sizes. Register access works like ptrace’s PTRACE_GETREGSET:
Depending on system architecture, there can be multiple register
sets; the ID of the desired register set must be specified by the user.
On x86-64, register set 1 contains the general purpose registers,
while register set 2 is made up of the floating point and vector
registers.

4.3 Interaction with GDB
As explained in Section 3.1 we chose to implement GDB’s remote
debugging protocol10 to allow the use of the GDB front end with
plutonium-dbg. A full explanation of the rather complex protocol
would be out of scope for this work.

In our implementation, a small Python server accepts a subset of
the protocol (features not implemented by plutonium-dbg such as
memory watchpoints are not currently supported) and translates
the incoming commands into IOCTL requests for the kernel module.
A brief overview of supported packets can be found in Table 1.

9The jprobes API formerly enabled that exact feature, but was removed with Linux
4.15.
10https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

ROOTS ’18, November 29–30, 2018, Vienna, Austria Tobias Holl, Philipp Klocke, Fabian Franzen, Julian Kirsch

Table 1: Supported GDB protocol packets

Packet Description

c Continues a suspended thread
g Requests the current register set
H Sets the target thread
m Reads arbitrary memory
M Writes arbitrary memory
q Feature queries (partially supported)
s Single-steps the current thread
T Queries whether a thread is alive
z Removes a breakpoint
Z Sets a breakpoint
? Indicates reasons for thread suspension

The individual packets are explained in more detail in the GDB
documentation. To connect to such a remote server from a GDB
client, users can use the target remote command with the address
and port number that the server is listening on.

4.4 Access controls
Debuggers generally have far-ranging permissions to modify other
processes. This means that rigorous access controls are necessary
to avoid malicious actors from abusing the debugger to escalate
their privileges on the system. In ptrace, this is enforced through
checks involving the debugger and target process credentials (in
the ptrace_may_access function), and may be further restricted
through the use of kernel security modules such as YAMA.

Access to plutonium-dbg’s kernel module could be restricted
by setting the file permissions on the /dev/debugging device file,
but only on a very coarsely defined basis—any user with write
permissions could then attach to any process in the system. Instead,
we duplicate the access control checks used by ptrace by check-
ing for the global CAP_SYS_PTRACE capability and comparing the
current real, effective, and saved user and group IDs (threads in
the same thread group are excluded from those checks). Note that
unlike ptrace, we do not verify the SUID_DUMPABLE_USER flag (c.f.
Section 2.1.1), because this would again allow processes to prevent
debuggers from attaching.

If the debugger and the victim are not in the same thread group
(i.e. debugging is only used for introspection), we then delegate
to the kernel security modules, so that access to plutonium-dbg is
only granted if ptrace would also have been available.

The GDB server, of course, also needs to be secured against il-
legitimate access. Because TCP sockets are by their nature open
for others to connect, and the GDB protocol does not implement
authentication, security-minded users may prefer to use Unix do-
main sockets to communicate between GDB and the GDB server,
so that access to the GDB server can be controlled by the socket
file’s permission settings.

Table 2: Scenarios for debugger detection

Scenario Source

1 Uses PTRACE_TRACEME to detect ptrace-based
debuggers

[14]

2 Checks that the vDSO is located above the
top of the stack

3 Checks if the debugger disabled ASLR for the
target process

4 Detects if an interactive debugger has set the
LINES and COLUMNS environment variables

5 Compares the parent process to a list of
known debuggers

6 Searches for a GDB-specific breakpoint in
the dynamic loader

7 Checks whether the heap was relocated in a
PIE binary by a debugger

8 Scans the process memory for inserted
breakpoints

[21]
9 Uses a stray 0xCC to check for the SIGTRAP

signal
10 Detects single-stepping via the icebp (F1)

instruction
11 Reads the trap flag to detect single-stepping

12 Manually raises SIGTRAP

[23]13 Attempts to find GDB by reading the “_”
environment variable

14 Checks for leaked debugger file descriptors

5 EVALUATION
We tested our approach on a number of binaries designed to detect
or otherwise block debugging on x86-64, and evaluated the per-
formance improvement gained over ptrace’s PTRACE_PEEKDATA and
PTRACE_POKEDATA for memory manipulation.

5.1 Detection
The debugmenot [14] and pangu [23] projects showcase (as proof-
of-concept implementations) a number of approaches by which
malware can attempt to detect and evade debuggers. Tung [21]
outlines (but does not implement) a few others. We eliminated those
examples that targeted non-Linux operating systems or exploited
unrelated bugs in debuggers (e.g. in the code responsible for parsing
binaries). All fourteen remaining scenarios are described in more
detail in Table 2.

We then used plutonium-dbg to debug the remaining binaries.
For comparison, the same debugging operations were also per-
formed twice in each of GDB 7.12 and LLDB trunk (rev. 331965),
once by starting the binary directly, and once by attaching to an
already-running process.

Table 3 shows the results of our evaluation. Red cells indicate
that the debugger was detected or otherwise failed to properly
debug the target. Green cells show that debugging was successful.
Rows with the -p flag shown contain the results obtained when the

Kernel-Assisted Debugging of Linux Applications ROOTS ’18, November 29–30, 2018, Vienna, Austria

Table 3: Detection results

1 2 3 4 5 6 7

plutonium-dbg

GDB
GDB (-p)
LLDB
LLDB (-p)

8 9 10 11 12 13 14

plutonium-dbg

GDB ∗ ∗

GDB (-p) ∗ ∗

LLDB ∗ ∗

LLDB (-p) ∗ ∗

∗ unless signals are explicitly passed to the target

debugger was attached to a process that was already running (via
the -p <pid> command line option).

5.2 Performance
Another issue with ptrace is the number of context switches re-
quired to perform a simple memory transfer. We explained in Sec-
tion 1 how PTRACE_PEEKDATA and PTRACE_POKEDATA are limited to
transferring one machine word of data at a time, requiring two
context switches for each operation.

To measure the performance improvements generated over
ptrace by allowing reading and writing arbitrarily-sized memory
sections (Section 3.2.4), we repeatedly (n = 200) transfer 32MiB
of data from and to the heap of a target process and measure the
time taken. Obviously, transferring that amount of data is rare in
debugging scenarios (short of programs that analyze the entire
memory space of a target process), but was necessary here in order
to gain reliable measurements independent of system load.

On average, ptrace takes 2.51 s (σ = 0.09s) to read and 2.47 s
(σ = 0.07s) to write 32MiB of data. In comparison, plutonium-dbg
takes 0.03 s (σ = 0.0014s) and 0.04 s (σ = 0.0018s) respectively.
Figure 1 shows these values on a logarithmic scale, with error bars
representing three standard deviations (3σ) in either direction.

From this, we compute the expected speedup factors and their
respective standard deviations: For reading, the mean speedup fac-
tor is 78.62 (σ = 4.43). Writing is expected to be around 61.20 times
faster (σ = 3.21)11.

6 DISCUSSION
From Table 3, we can see that of the fourteen tested methods to
detect the presence of a debugger, only three succeeded, compared
to up to 13 for GDB. Similarly, Figure 1 shows the performance im-
provements that can be realized over ptrace’s system call interface.

11Repeating the measurements with 8MiB of data resulted in similar speedups (84.27
with σ = 7.05 for reading and 64.77 with σ = 2.95 for writing).

Figure 1: Memory Transfer Performance Reading/Writing
32MiB of Data 200 Times

Reading Writing

102

103

Ti
m
e
[m

s]

ptrace
plutonium-dbg

6.1 Evaluation results
Out of the three failed test cases, the first (8) is based on scanning
the program’s code segment for breakpoints or other modifications.
This approach will generally detect all software breakpoints—the
most common workaround is making use of the CPU’s hardware
breakpoint functionality. There are, however, means by which these
checks can be circumvented. A possible approach can be found in
Section 6.3.

The other two test cases (10, 11) in which plutonium-dbgwas de-
tected specifically targeted single-stepping. The icebp instruction
(F1) sends the same CPU interrupt that single-stepping does. The
resulting SIGTRAP is then consumed by the debugger, as if it had
come from a normal step. Further analysis of the source instruction
that triggered the interrupt may help alleviate this issue.

To work around the remaining detection method (11) we have to
hide the real contents of the trap flag from any user-space process.
Usually, the trap flag is accessible to the program and exposed to
user-space. The only ways for programs to directly obtain the value
of the flag without the help of the kernel are the pushf instruction
and its 32- and 64-bit equivalents, which push parts of the RFLAGS
register including the trap flag to the stack. Because single stepping
only occurs at inspection points controlled from within our kernel
module, it would theoretically be feasible to decide whether the
target instruction is a pushf and modify the resulting bits pushed
on the stack accordingly. Unfortunately, it may not even be possible
to intercept and analyze all instructions in this manner, because
some operations on the stack segment register ss disable interrupts
temporarily [21]. This also still leaves open other paths of obtaining
the processor flags with kernel assistance, including register access
through ptrace or the struct sigcontext on the stack of any signal
handler invoked in the program.

The performance increase gained over ptrace is significant, al-
though likely not relevant in practice. For one, users that have access
to system call functionality (e.g. when using the kernel module di-
rectly from C code) will prefer the even faster process_vm_readv

ROOTS ’18, November 29–30, 2018, Vienna, Austria Tobias Holl, Philipp Klocke, Fabian Franzen, Julian Kirsch

and process_vm_writev system calls that are already provided by
the Linux kernel. Similarly, when plutonium-dbg’s GDB server is
used, the bottleneck will not be querying the data, but encoding
the raw data for the (serial) GDB remote protocol.

6.2 Other detection methods
We have not yet addressed methods specific to plutonium-dbg

by which malicious software can detect the presence of
plutonium-dbg. As far as we know, there is no direct way to
query whether a debugger is attached like there is with ptrace.
In particular, the XOL area in which uprobes executes probed
instructions does not appear to be visible from user-space, nor
does the list of installed probes. However, it is certainly possible to
determine whether plutonium-dbg is present (and loaded) on the
system at all.

The list of kernel modules is accessible to all users via lsmod or
/sys/module/, and of course plutonium-dbg is not hidden in that
list. Similarly, the IOCTL debugging interface has to be exposed to
the user in order to make the kernel module usable. The presence of
/dev/debugging and the associated entries in /proc/devices and
/sys/class/debugging give away that plutonium-dbg is loaded12.

While it would be possible to use methods from rootkit develop-
ment to attempt to hide the debugger from user-space, we found no
indication that malware alters its behavior based merely on the fact
that a debugger is installed as opposed to in use. One solution could
be to intercept and filter the results of module list or file system
traversing system calls.

6.3 Limitations and future work
At the moment, plutonium-dbg can be detected through its single-
stepping functionality and by programs that search their address
space for breakpoints. We discussed earlier that it will require more
efforts to be able to work around the former, but the latter could
feasibly be addressed.

On modern Intel x86-64 CPUs, we can set pages containing exe-
cutable code as execute-only through Memory Protection Keys and
other virtualization instructions (as some hypervisors do) and can
reliably trigger a page fault if a program tries to read its own code
segment. In the page fault handler, we could then swap permissions
to read-only (or read-write) and remove all breakpoints on that
page. This allows the program to only access the unmodified ver-
sion of its code. When execution continues, the page fault handler
is invoked again (because the page is no longer executable) and the
breakpoints can be restored. Further research in this direction could
allow plutonium-dbg to avoid being detected even when software
breakpoints are in use. As long as the number of breakpoints does
not surpass the number of architecturally provided breakpoints,
plutonium-dbg could also fall back to using hardware breakpoints,
although at least on x86-64 these are visible to the user through
PTRACE_PEEKUSER.

In this work, we limited our evaluation to x86-64 machines,
but the kernel module is not limited to any specific architecture13.
12Theoretically, so does the kprobe that is registered on the get_signal function (Sec-
tion 4.2.3)—it is listed in /sys/kernel/debug/kprobes/list. However, most systems
require superuser permissions in order to access this file.
13The GDB server relies on the architecure-specific register layout, and is currently
limited to x86-64, but could be generalized to other architectures.

At least in theory, uprobes and single-stepping (and therefore the
full feature set of plutonium-dbg) are also both supported on 32-
bit x86 as well as on the ARM64 and PowerPC architectures and
on IBM mainframes (s390). The ARM, MIPS, and SPARC archi-
tectures also support uprobes, but attempting to step over indi-
vidual user-mode instructions on those systems will result in an
error (arch_has_single_step is left undefined). Further analysis of
plutonium-dbg’s performance on other architectures than x86-64

would be a valuable addition, especially when it comes to single-
stepping–based detection methods that may differ from platform to
platform. Another interesting extension to plutonium-dbg would
be an ARM/ARM64 port of the GDB server, to enable debugging
on the most common Android systems.

One of the main shortcomings of the current version of the
debugger is the ability to only be able to set breakpoints on memory
mapped files; this shortcoming is a direct inheritance from using the
uprobesAPI. This essentiallymeans that plutonium-dbg is currently
unable to set breakpoints on allocations stemming from mmap’ed
pages not backed by memory mapped files. To alleviate this issue,
we provide an experimental kernel patch that extends uprobes to
arbitrary memory areas, including those not backed by a file.

7 RELATEDWORK
Shebs [17] uses a uprobes-based kernel module alongside a set of
patches for GDB to allow placing global breakpoints that persist
across executions of the same executable. To our knowledge, this is
the first occasion that uprobes was used for debugging as opposed
to tracing.

The SystemTap framework also allows the use of uprobes to regis-
ter custom callback functions. However, there is no built-in support
for actual debugging use. Registered actions are typically short
and non-blocking (e.g. logging) rather than the complex suspend-
wakeup cycle used by plutonium-dbg [19].

Even before utrace and uprobes, there were attempts to circum-
vent the limitations imposed by ptrace: The ERESI project’s Embed-
ded ELF Debugger (e2dbg) embeds their own signal handlers in a
process using forced dynamic library loading through DT_NEEDED

or LD_PRELOAD in order to avoid the expensive context switches
that happen when a breakpoint is hit [7, 22]. Of course, registering
signal handlers is a process that is much more open to detection
than kernel-based approaches, especially as potentially malicious
code can simply override the library’s signal handlers.

8 CONCLUSION
In this paper, we showed that uprobes can form a reliable basis for
a debugging interface that avoids some of the issues presented by
ptrace.

Our approach to debugging will likely never replace ptrace. Not
only is ptrace already widely used, but backward compatibility with
legacy applications will force its persistence in the kernel more
than likely [20]. To be clear, ptrace is—despite all of its issues—not
a bad option for traditional debugging.

However, when it comes to malware analysis and reverse engi-
neering, we have demonstrated that ptrace makes it easy for targets
to interfere with the debugging process, and that other alterna-
tives are needed to approach such software. We believe that the

Kernel-Assisted Debugging of Linux Applications ROOTS ’18, November 29–30, 2018, Vienna, Austria

hybrid kernel module / user-space client approach presented in this
work—despite its shortcomings—has tremendous potential to im-
prove debugging processes by augmenting the capabilities already
present in existing debuggers.

9 AVAILABILITY
plutonium-dbg is freely accessible on GitHub:

https://github.com/plutonium-dbg/plutonium-dbg

REFERENCES
[1] Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E. Hassan,

Juergen Dingel, and James R. Cordy. 2018. Analyzing a decade of Linux system
calls. Empirical Software Engineering 23, 3 (June 2018), 1519–1551. https://doi.
org/10.1007/s10664-017-9551-z

[2] Ramon Caceres. 1984. Process Control in a Distributed Berkeley UNIX Environment.
Technical Report. University of California, Berkeley, Department of Electrical
Engineering and Computer Sciences.

[3] Xu Chen, Jon Andersen, Zhuoqing Morley Mao, Michael Bailey, and Jose Nazario.
2008. Towards an understanding of anti-virtualization and anti-debugging
behavior in modern malware. In 2008 IEEE International Conference on De-
pendable Systems and Networks With FTCS and DCC (DSN). IEEE, 177–186.
https://doi.org/10.1109/DSN.2008.4630086

[4] Jonathan Corbet. 2010. Replacing ptrace(). LWN. Retrieved 2018-06-09 from
https://lwn.net/Articles/371501/

[5] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In 2018 IEEE Symposium on Security and
Privacy (SP). 870–884. https://doi.org/10.1109/SP.2018.00054

[6] Juan-Mariano de Goyeneche and Elena Apolinario Fernández de Sousa. 1999.
Loadable kernel modules. IEEE Software 16, 1 (Jan. 1999), 65–71. https://doi.org/
10.1109/52.744571

[7] ELFsh crew [Julien Vanegue and Sebastien Soudan]. 2005. Embedded ELF De-
bugging: the middle head of Cerberus. Phrack Magazine 11, 63, Article 9 (May
2005). http://phrack.org/issues/63/9.html

[8] Mohamad Gebai and Michel R. Dagenais. 2018. Survey and Analysis of Kernel
and Userspace Tracers on Linux: Design, Implementation, and Overhead. ACM

Comput. Surv. 51, 2, Article 26 (March 2018), 33 pages. https://doi.org/10.1145/
3158644

[9] Brendan Gregg. 2015. Linux uprobe: User-Level Dynamic Tracing. Brendan
Gregg’s Blog. Retrieved 2018-06-10 from http://www.brendangregg.com/blog/
2015-06-28/linux-ftrace-uprobe.html

[10] Marion Guthmuller, Lucas Nussbaum, and Martin Quinson. 2011. Émulation
d’applications distribuées sur des plates-formes virtuelles simulées. In Rencontres
francophones du Parallélisme (RenPar’20). Saint Malo, France.

[11] Marion Guthmuller, Martin Quinson, and Lucas Nussbaum. 2010. Interception
système pour la capture et le rejeu de traces. Technical Report. Laboratoire lorrain
de Recherche en Informatique et ses Applications.

[12] Jim Keniston, Ananth Mavinakayanahalli, Prasanna Panchamukhi, and Vara
Prasad. 2007. Ptrace, Utrace, Uprobes: Lightweight, dynamic tracing of user apps.
In Proceedings of the 2007 Linux symposium. 215–224.

[13] Tom J. Killian. 1984. Processes as Files. In Proceedings of the Summer 1984 USENIX
Conference. USENIX, 203–207.

[14] Julian Kirsch. 2018. debugmenot. Retrieved 2018-06-12 from https://github.com/
kirschju/debugmenot/

[15] Avinesh Kumar. 2008. TASK_KILLABLE: New process state in Linux. Technical
Report. IBM developerWorks. Retrieved 2018-06-13 from https://www.ibm.com/
developerworks/linux/library/l-task-killable/

[16] Chloé Macur. 2014. Émulation d’applications distribuées sur des plates-formes
virtuelles simulées. Technical Report. Laboratoire lorrain de Recherche en Infor-
matique et ses Applications.

[17] Stan Shebs. 2011. Kernel module for global breakpoints. LWN. Retrieved
2018-06-11 from https://lwn.net/Articles/469769/

[18] Nathan Sidwell, Vladimir Prus, Pedro Alves, Sandra Loosemore, and Jim Blandy.
2008. Non-stop multi-threaded debugging in GDB. In Proceedings of the GCC
Developers’ Summit. 117–127.

[19] Josh Stone. 2011. SystemTap update & overview. Linux Foundation Collaboration
Summit 2011.

[20] Linus Torvalds. 2010. Linux Kernel Mailing List. Retrieved 2018-06-09 from
https://lkml.org/lkml/2010/1/25/148

[21] Yu-Jye Tung. 2018. Reverse Engineering Reference Manual. Retrieved 2018-06-12
from https://github.com/yellowbyte/reverse-engineering-reference-manual/

[22] Julien Vanegue, Thomas Garnier, Julio Auto, Sebastien Roy, and Rafal Lesniak.
2007. Next generation debuggers for reverse engineering. In 4th Annual Hackers
To Hackers Conference (BlackHat Europe).

[23] Julien Voisin. 2016. pangu. Retrieved 2018-06-13 from https://github.com/jvoisin/
pangu/

https://github.com/plutonium-dbg/plutonium-dbg
https://doi.org/10.1007/s10664-017-9551-z
https://doi.org/10.1007/s10664-017-9551-z
https://doi.org/10.1109/DSN.2008.4630086
https://lwn.net/Articles/371501/
https://doi.org/10.1109/SP.2018.00054
https://doi.org/10.1109/52.744571
https://doi.org/10.1109/52.744571
http://phrack.org/issues/63/9.html
https://doi.org/10.1145/3158644
https://doi.org/10.1145/3158644
http://www.brendangregg.com/blog/2015-06-28/linux-ftrace-uprobe.html
http://www.brendangregg.com/blog/2015-06-28/linux-ftrace-uprobe.html
https://github.com/kirschju/debugmenot/
https://github.com/kirschju/debugmenot/
https://www.ibm.com/developerworks/linux/library/l-task-killable/
https://www.ibm.com/developerworks/linux/library/l-task-killable/
https://lwn.net/Articles/469769/
https://lkml.org/lkml/2010/1/25/148
https://github.com/yellowbyte/reverse-engineering-reference-manual/
https://github.com/jvoisin/pangu/
https://github.com/jvoisin/pangu/

	Abstract
	1 Introduction
	2 Background
	2.1 Debugging concepts
	2.2 Linux kernel features

	3 Design
	3.1 System architecture
	3.2 Debugging functionality
	3.3 Other requirements

	4 Implementation
	4.1 User-kernel communication
	4.2 Debugging functionality
	4.3 Interaction with GDB
	4.4 Access controls

	5 Evaluation
	5.1 Detection
	5.2 Performance

	6 Discussion
	6.1 Evaluation results
	6.2 Other detection methods
	6.3 Limitations and future work

	7 Related Work
	8 Conclusion
	9 Availability
	References

